\mathbf{X}^{b} PCBs Pesticide Sediment Core C011 C011 C015 C015 C019 C025 C061 C067 C093 7111-2 C111-2 C112 C112 C121 C133 C135 C135 C136 C138 C144 C147 C148 C152 C156 C158 C162 C169 2172 C173 C182 C185 B2 A and B A and B B2 A, C and D B and D B and C A, B and D A. B and D B and D A, B and D A, B and D A and C B and D Archived Interval Metals Analytes SVOCs PAHs Dioxin TPH Elevated levels of mercury and Elevated levels of TPH detected Agreed to change. Dropped C interval TPH detected in C interval detected in core in C interval | | | = disagree
= agree but no arhived sample do to original volume limitations
= questions for EPA | |---|---|---| | EPA Rationale | Agree? | Note | | Additional dioxin delineation | Yes | | | Mercury required due to increasing concentrations in core | Yes | | | Elevated levels of PCBs; spatial
coverage for dioxin off shore of
OSM | Yes | | | Elevated zinc in interval D | Yes | FSP already calls for this | | High levels of PCBs in interval B1 | Yes | G019 was selected for congener analysis, Why not do B1 instead of B2? So aroclor/congener/ dioxin data from same sample | | High levels of PCBs in interval
C1 | Yes | G025 was selected for congener analysis. Why not do B1? | | Elevated levels of mercury in interval C | Yes | | | Pentachlorophenol source
nearby | Yes | | | Elevated levels of PCBs and
PAHs in intervals A and B | Yes | | | Elevated levels of PCBs and dioxins in upper intervals | Agreed to change.
Dropped PCB
analysis. | | | Elevated levels of PCBs in interval B2 | Yes | | | Elevated levels of PAHs;
downstream of T4 | Yes | | | Delineation of Dioxin offshore of Schnitzer | Yes | | | Vertical delineation of TPH | Yes | C121-D already selected for PCB/Pest/SVOCs/PAH analysis, TPH will be done if adequate archive volume | | Elevated levels of dioxin, DDT
and PCBs in D interval | Yes | yes to PCBs, Total DDT levels comparable throughout area, will assume higher D level concentration extends upward to B level. | | DDT detected at elevated levels
in surrounding cores and G134 | Yes | | | Vertical delineation of TPH | Yes | | | Elevated detections of dioxin
nearby (G133-D and B012) | Yes | | | DDT detected at elevated levels
in surrounding cores
DDT and PCBs detected at | Yes
Yes | C144 is an offshore core, C144-C is already selected for PAH analysis. | | elevated levels in surrounding
cores; no dioxin samples nearby | - | C144 is an orising core, C144-C is aready selected for 1 Art analysis. | | Elevated levels of DDT and
PCBs in C interval | Yes | | | DDT and PCBs detected at
elevated levels in C147 | Yes | | | Vertical delineation of mercury
and TPH | Yes | | | Elevated levels of mercury and TPH detected in C interval | Agreed to change | Analyze F instead of D to get to max depth and interpolate conservatively. | | Spatial coverage | Yes | nearshore core concentrations are all low or U, nearby C162 (see below) will provide spatial coverage as will DMMP surface station G-30 which is slightly inshore and between C162 and C158. | | DDT and PCBs detected at elevated levels in C166 | Yes | C162 is offshore and downstream of C166, so it makes sense. C162-D is already selected for metals, SVOC, and PAH analyses. | | Elevated levels of copper and lead in interval E | Agreed to change.
Dropped metals
analysis | C164-D interval begins at 9' below mudline and is only 2' thick. We have data on C and E that shows E having highest concentrations, we will assume E segment concentrations extend upward to C segment boundary. Dropped | | DDT and PCBs detected at
elevated levels in surrounding
cores | Yes | Nearby upstream core C171 contains elevated conc. C169-D archive already selected for metals, SVOC, and PAH analyses. | | Elevated levels of PCBs
detected in C interval | Agreed to change.
Dropped PCB
analysis | C172-E already selected for metals, PCB, Pest, SVOC, and PAH analyses,
Highest adjacent PCB and other analyte values will be applied to the D
segment. | | DDT and PCBs detected at elevated levels in surrounding | Yes | Downstream core C171 shows elevated conce. C173-E already selected for metals, SVOC, and PAH analyses. | TPH depth not delineated, but this sample is already slated for PCB, Pest, SVOC, PAH analyses - is volume sufficient? Hg Holding time expired. Why do need both? Do B only (higher conc), for congeners | C196 | A, B and C | | X | Х | | | X | | Delineation of contamination at
MarCom | Yes | yes to dioxins on A,B (C is thin and can extrapolate B level to bottom - sediments are sandy). No to PCBs/Pesticides as DMMP station C-23 and G-23 will provide delineation of these compounds in the immediate area | |--------|------------|----------------|---|---------------------------|---|---|---|---|--|--|---| | C202 | D | X ^a | | | | | | X | Elevated levels of mercury and
TPH detected in C interval | Yes | | | C203 | С | | | X ^b | | | X | | Subsurface dioxin and PCB congener data in vicinity of | Yes | | | C207 | В | | | X ^b | | | | | MarCom Subsurface congener data in vicinity of MarCom | Agreed to change.
Analyze B interval | Select B instead of C | | C215 | В | | | | | | X | | Delineation of contamination at
MarCom | Agreed to change.
Dropped A, do
dioxin in B | G215 (surface) collocated and analyzed for PCBs. C215-B and C already selected for PCB & Pest analyses. | | C221 | D | | | | | | | | TPH concentrations increase with depth | Agreed to change.
Dropped TPH, no
archived sample | | | C232 | В | | | <u> </u> | | | X | | Potential pentachlorophenol | Yes | | | C260 | D | X ^a | | | | | | | Source nearby Vertical delineation of mercury contamination | Yes | | | C263 | С | | | \mathbf{X}^{d} | | | | | Elevated levels of
contamination in B interval;
subsurface congener data at US
Moorings | Dropped metals, | Yes to congener analysies. Hg and pesticide concentrations in this intermediate interval can be conservatively estimated downward from segment B. | | C269 | D | X ^a | X | | | | | | Elevated levels of contamination in C interval | Yes | | | C270 | D | X ^a | | | | | | | Mercury levels increase with depth | Yes | | | C276 | D | | | | | X | | | Vertical delineation of PAH contamination | Yes, selected in
FSP | This analysis already selected for C276-D in FSP. | | C277 | С | | | X^{b} | | | X | | Subsurface dioxin and PCB
congener data in vicinity of
Willamette Cove | Yes | | | C282 | A, B and D | | | | | | | X | Bunker oil seep nearby | Yes | C282-A already selected for PCB and PAH analysis, may be insuff. volume; could use G282 for TPH (closer to shore) | | C290 | A, B and D | | Х | Х | | | X | X | Delineation of contamination at
Willamette Cove | Yes | | | C291 | A, B and C | | X | X | | | X | | Delineation of contamination at
Willamette Cove | Yes | | | C293-2 | B2 | | | X ^b | | | X | | Subsurface dioxin and PCB
congener and dioxin data in
vicinity of Willamette Cove | Yes | | | C299 | A and C | | X | X | | | | | Offshore delineation of PCBs
and pesticides | Yes | | | C300 | A, B and D | | X | X | | | | | Offshore delineation of PCBs
and pesticides | Yes | | | C302 | B and C | | | X ^b | | | X | | Subsurface dioxin and PCB congener data in vicinity of Wacker | Yes | | | C521 | B and D | | X | X | | | | | Offshore delineation of PCBs and pesticides | Agreed to change.
Dropped A,
replace E with D
for pesticides. | No to A, collocated G521 which represents A was already analyzed for Pest/PCBs. C521 B and D already selected PCB analysis in FSP; C521 C and E already selected for pesticide anlysis. Do B and D for both as requested. | | C314 | D | X ^a | | | | | | | Elevated levels of mercury detected in C interval | Yes | | | C323 | Е | | | | | | | | Elevated levels of copper in C324-E | Agreed to change.
Dropped metals
analysis. | Concentrations decrease w/depth and this segment E is only 1 ft thick. | | C327 | D | X ^C | | X^{b} | | | | | Mercury levels increase with depth; subsurface congener data | Agreed to change.
Added metals
analysis. | | | C329 | A, B and D | | | | | | | X | Elevated levels of PAH contamination; no TPH data | Yes | | | C335 | A, C and E | | | | | | | X | Elevated levels of PAH contamination; no TPH data | Yes | | | C335 | Е | | | | | | Х | | Delineation of dioxin contamination | Agreed to change.
Dropped D
sample. | C335-E already selected for dioxin analysis; concentrations in -B (41 pg/g) and C (11.9 pg/g) show decreasing w/depth. Will interpolate between C and E conservatively | | C348 | A and B | | | | | | X | | Delineation of dioxin
contamination downstream of | Yes | , | | C342 | B and C | | | X^b | | | X | | C351 Subsurface dioxin and PCB congener data in vicinity of | Yes | | | C347 | E | X ^c | | | | X | | | Triangle Park Elevated levels of PAHs, copper, zinc and mercury in | Yes | | | C349 | D | X ^a | | 1 | | | | | interval C Mercury levels increase with depth | Yes | | | C356 | D | | | | | | | | Elevated levels of zinc and chromium in interval C | Agreed to change.
Dropped metals
analysis. | Sample interval less than 2 ft thick. Will extrapolate higher C levels to E | | C356 | A, B and D | | | X | | | | | Offshore delineation of PCB contamination | Yes | | | C361 | A and C | | | X | | | | | Offshore delineation of PCB contamination | Yes | B not C, there is no C at this location | | C364 | D | X ^a | | | | | | | Mercury levels increase with depth | Yes | | | | - | | | | • | | | | | | | | C366 | F1 | Ī | | X | | Ī | Ī | | Delineation of PCB contamination, | Yes | |--------------|------------------|----------------|---|----------------|---|---|---|---|--|--| | C366 | C1 | | | X ^b | | | X | | Subsurface dioxin and PCB congener data in vicinity of Arkema | Yes | | C371 | В | | | X^b | | | | | Subsurface congener data in vicinity of Arkema | | | C377 | D | | | | | X | X | | Vertical delineation of dioxin
PCBs, pesticides and PAHs | Agreed to change. vertical gap is ~ 3ft, will interpolate conservatively
Dropped
PCB/Pests
analyses. | | C377 | Е | | | X ^b | | | | | Subsurface dioxin and PCB
congener data in vicinity of
Willbridge/Arkema | Yes C377-E was already analyzed for dioxins. Congeners will be analyzed | | C379 | A, B and D | | | | | | | X | Spatial coverage of TPH | Yes | | C380 | A, C and E | | | | | | | X | Spatial coverage of TPH;
downstream from M1 Outfall | Yes | | C382 | В | | | X ^b | | | X | | Subsurface dioxin and PCB
congener data in vicinity of
Shipyard/Swan Island Lagoon | Yes | | C397 | С | | | X ^b | | | | | Subsurface PCB congener data
in vicinity of Shipyard/Swan
Island Lagoon | Yes | | C401 | Е | | | X^b | | | | | Subsurface congener data in vicinity of Willbridge | Yes | | C405 | В | | | | | | X | | Additional dioxin data in Swan
Island Lagoon (east bank) | Yes | | C409 | A and B | X ^e | | | | | | | Delineation of TBT upstream
from shipyard | | | C409 | С | | | X ^b | | | | | Subsurface congener data in vicinity of Shipyard (Channel) | Yes | | C415 | A, B, D | | | | | | X | X | Spatial coverage of TPH | Yes no A sample, will use older G415 sample archive | | C417 | С | | | | | | X | | Vertical delineation of contamination | Agreed to change. yes to dioxin, will conservatively assume higher B levels for metals, PCBs,
Dropped metals, pesticides extend to D.
PCB/Pests
analyses. | | C420 | A and B | X ^e | | | | | | | Delineation of TBT upstream from shipyard | Yes | | C420 | С | | | X^{b} | | | | | Subsurface congener data in
vicinity of Shipyard (Channel) | Yes | | C421 | A, B and D | | X | | | | | | Spatial coverage within Swan
Island Lagoon | Yes | | C421 | Е | | | X | | | | | Vertical delineation of PCB contamination | Agreed to change. analyze E only and conservatively assume levels for D and F
Dropped D
sample. | | C426 | D | | | | | | | | Elevated levels of copper detected in interval C | Agreed to change. Cu decreasing with depth, will assume C level extends to bottom of core
Dropped metals
analysis | | C430 | С | | | | | | X | | Additional dioxin data in Swan
Island Lagoon (head) | Yes | | C430 | D | | | | | | | | Vertical delineation of copper
and mercury contamination | Agreed to change. will conservatively assume E levels extend upward to C
Dropped metals
and Ho analysis | | C431 | В | | | X^b | | | Х | | Subsurface dioxin and PCB congener data downstream of | Yes | | C431 | Е | | | | | | | | Gunderson Vertical delineation of DDT contamination | Agreed to change. C431-F already selected for Pest and SVOCs analysis, will conservatively
Dropped interpolate E levels
pesticides analysis | | C436 | A and C | | X | | | | | | Elevated levels of total | Yes | | C436 | D | X ^a | | | | | | | chlordane detected in C441 Mercury levels increase with | Yes | | C440 | A and C | L | X | | L | L | L | | depth
Spatial coverage of pesticides | Yes | | C441 | A1, B1 and
D1 | | | | | | | X | Spatial coverage of TPH | Yes | | C444 | D | X ^a | | | | | | | Mercury levels increase with depth; high levels of mercury | Yes | | C445 | D | X | | | | | | | Elevated levels of arsenic,
Copper, lead, zinc, PCBs and
pesticides detected in interval C | Agreed to change. for PCB/Pesticides will make most conservative assumptions about D Dropped concentrations PCB/pesticides analyses | | C447 | A and C | | X | | | | | | and E Spatial coverage of pesticides | Yes | | C448 | A, C and E? | | X | | | | | v | Spatial coverage of pesticides | Yes no E Sample for this core | | C448
C453 | D
B | | | X^b | | | X | Х | Vertical delineation of TPH PCB and potential dioxin source area | Yes Agreed to change. congeners, dioxins on B only where conc peaks Dropped C sample | | C455 | B and C | | | X ^b | | | X | | PCB and potential dioxin source area | Yes | | C456 | B and C | | | | | | | X | Lateral delineation of TPH | Yes | | C457 | D | X plus
TBT | | X | X | X | | | Elevated levels of contamination in C and E | Agreed to change. Add TBT analysis | | | | | | | | | | | intervals | | | C461 | A, B, D | | | | | X | Spatial coverage | Yes | |------|---------|--|----------------|--|---|---|---|-----| | C477 | В | | X^{b} | | | | Subsurface congener data
downstream of Fire boat area | 1 | | C494 | A, B, D | | | | | X | No nearby TPH data;
stormwater discharge area | Yes | | C494 | С | | X ^b | | X | | Subsurface dioxin and PCB congener data in vicinity of Fire boat area | Yes | Footnotes: a: Mercury only b: PCB Congeners only c: Metals and mercury d: PCB Aroclors and Congeners e: TBT only | Sediment
Core | Archived
Interval | Metals | Pesticide
s | PCBs | Analytes
SVOCs | PAHs | Dioxin | ТРН | EPA Rationale | Agree? | Note | |------------------|----------------------|----------------|----------------|----------------|-------------------|------|--------|-----|--|----------------------|--| | C011 | C2 | | | | | | X | | Additional dioxin delineation | Yes | | | C011 | Е | w râ | | | | | | | Manager required due to | Yes | | | CUII | E | X ^a | | | | | | | Mercury required due to increasing concentrations in core | Tes | | | C015 | В | | | | | | X | | Elevated levels of PCBs;
spatial coverage for dioxin off | Yes | | | C015 | E | X | | | | | | | shore of OSM Elevated zinc in interval D | Yes | FSP already calls for this | | C019 | B2 | | | X^{b} | | | X | | High levels of PCBs in interval | Yes | G019 was selected for congener analysis, Why not do B1 instead of B2? So aroclor/congener/ dioxin data from same sample | | C025 | B2 | | | X ^b | | | X | | B1 High levels of PCBs in interval | Yes | G025 was selected for congener analysis. Why not do B1? | | C061 | D | X ^a | | | | | | | C1 Elevated levels of mercury in | No | will assume C concentration level extends to E | | C067 | A and B | | | | | | X | | interval C
Pentachlorophenol source | Yes | | | C093 | A and B | | | X ^b | | | X | X | nearby Elevated levels of PCBs and | Yes | | | C111-2 | D2 | | | X | | | X | | PAHs in intervals A and B Elevated levels of PCBs and | No | D is middle section where conc already shown to increase only slightly from C | | | | | | | | | | | dioxins in upper intervals | | to E (183 ug/kg to 220 ug/kg), for this and dioxin we will assume higher concentration all the way to next adjoining data point | | C111-2
C112 | B2
A, C and D | | | X ^b | | | | X | Elevated levels of PCBs in
interval B2
Elevated levels of PAHs; | Yes
Yes | | | C112 | B | | | | | | X | Λ | downstream of T4 Delineation of Dioxin offshore | Yes | | | C121 | D | | | | | | | X | of Schnitzer
Vertical delineation of TPH | Yes | C121-D already selected for PCB/Pest/SVOCs/PAH analysis, TPH will | | C133 | С | | X | X | | | | | Elevated levels of dioxin, DDT | partial Yes | be done if adequate archive volume yes to PCBs, Total DDT levels comparable throughout area, will assume | | C135 | B and D | | X | | | | | | and PCBs in D interval DDT detected at elevated | Yes | higher D level concentration extends upward to B level. | | C135 | D and B | | Α | | | | | X | levels in surrounding cores and
Vertical delineation of TPH | | | | C136 | B and C | | | | | | X | | Elevated detections of dioxin | Yes | | | C138 | A, B and D | | X | | | | | | nearby (G133-D and B012)
DDT detected at elevated | Yes | | | C144 | A, B and D | | X | X | | | X | | levels in surrounding cores DDT and PCBs detected at | Yes | C144 is an offshore core, C144-C is already selected for PAH analysis. | | C147 | D | | v | v | | | | | elevated levels in surrounding
cores; no dioxin samples
Elevated levels of DDT and | No | C147-D archive is an intermediate sample. We will assume higher | | C147 | D | | Х | Х | | | | | PCBs in C interval | 140 | concentration in C segments extends to the E segment. | | C148 | B and D | | X | X | | | | | DDT and PCBs detected at elevated levels in C147 | Yes | | | C152 | E | X ^a | | | | | | X | Vertical delineation of mercury | Yes | | | C156 | D | X ^a | | | | | | X | and TPH Elevated levels of mercury and TPH detected in C interval | Yes | Analyze F instead to get to max depth and interpolate conservatively. | | C158 | A, B and D | | X | X | | | | | Spatial coverage | No | nearshore core concentrations are all low or U, nearby C162 (see below) will provide spatial coverage as will DMMP surface station G-30 which is slightly inshore and between C162 and C158. | | C162 | A, B and D | | X | X | | | | | DDT and PCBs detected at | Yes | C162 is offshore and downstream of C166, so it makes sense. C162-D is | | C164 | D | X | | | | | | | elevated levels in C166 Elevated levels of copper and | No | already selected for metals, SVOC, and PAH analyses. C164-D interval begins at 9' beloqw mudline and is only 2' thick. We have data on C and E that shows E having highest concentrations, we will assume E | | C169 | A and C | | X | X | | | | | lead in interval E DDT and PCBs detected at | Yes | segment concentrations extend upward to C segment boundary. Nearby upstream core C171 contains elevated conc. C169-D archive already | | | | | | | | | | | elevated levels in surrounding cores | | selected for metals, SVOC, and PAH analyses. | | C172 | D | | | X | | | | | Elevated levels of PCBs
detected in C interval | No | C172-E already selected for metals, PCB, Pest, SVOC, and PAH analyses,
Highest adjacent PCB and other analyte values will be applied to the D
segment. | | C173 | B and D | | X | X | | | | | DDT and PCBs detected at elevated levels in surrounding | Yes | Downstream core C171 shows elevated conce. C173-E already selected for metals, SVOC, and PAH analyses. | | C182 | D | X ^a | | | | | | X | cores Elevated levels of mercury and TPH detected in C interval | Yes | TPH depth not delineated, but this sample is already slated for PCB, Pest, SVOC, PAH analyses - is volume sufficient? Hg Holding time expired. | | C184 | B and C | | | X ^b | | | | | Elevated levels of PCBs detected in core | partial Yes | Why do need both? Do B only (higher conc) for congeners | | C185 | D | | | | | | | X | Elevated levels of TPH
detected in C interval | Yes | | | C196 | A, B and C | | X | X | | | X | | Delineation of contamination at MarCom | partial Yes | yes to dioxins on A,B (C is thin and can extrapolate B level to bottom -
sediments are sandy). No to PCBs/Pesticides as DMMP station C-23 and G-23
will provide delineation of these compounds in the immediate area | | C202 | D | X ^a | | | | | | X | Elevated levels of mercury and TPH detected in C interval | Yes | | | C203 | С | | | X ^b | | | X | | Subsurface dioxin and PCB congener data in vicinity of | Yes | | | C207 | С | | | X^b | | | | | MarCom Subsurface congener data in vicinity of MarCom | No | Will get congener data for area from C203 | | C215 | A, B and C | | | X | | | | | Delineation of contamination at MarCom | No | G215 (surface) collocated and analyzed for PCBs. C215-B and C already selected for PCB & Pest analyses. | | C221 | D | | | | | | | X | TPH concentrations increase with depth | No | No archived sample | | C232 | В | 72a | | | | | X | | Potential pentachlorophenol source nearby | Yes | Hg concentration decreasing with depth. Assume C segment levels (0.2 ppm) | | C260
C263 | C | X ^a | X | X ^d | | | | | Vertical delineation of mercury
contamination
Elevated levels of | No
partial Yes | extend to D segment Yes to congener analysies. Hg and pesticide concentrations in this | | | | | | 21 | | | | | contamination in B interval;
subsurface congener data at US | · | intermediate interval can be conservatively estimated downward from segment B. | | C269 | D | X ^a | X | | | | | | Moorings Elevated levels of | Yes | | | C270 | D | X ^a | | | | | | | contamination in C interval Mercury levels increase with | Yes | | | C276 | D | | | | | X | | | depth
Vertical delineation of PAH | Yes, selected in FSP | This analysis already selected for C276-D in FSP. | | C277 | С | | | X ^b | | | X | | contamination Subsurface dioxin and PCB congener data in vicinity of | Yes | | | C282 | A, B and D | | | | | | | X | Willamette Cove Bunker oil seep nearby | Yes | C282-A already selected for PCB and PAH analysis, may be insuff. volume; | | C290 | A, B and D | | X | X | | | X | X | Delineation of contamination | Yes | could use G282 for TPH (closer to shore) | | C291 | A, B and C | | X | X | | | X | | at Willamette Cove Delineation of contamination | No | yes to dioxin. Surrounding samples provide horizonatal and vertical data on PCBs/Pesticides in area | | C293-2 | B2 | | | X^{b} | | | X | | at Willamette Cove Subsurface dioxin and PCB | No | | | C200 | A and C | | X | v | | | | | congener and dioxin data in vicinity of Willamette Cove | Yes | | | C299
C300 | A and C A, B and D | | X | X | | | | | Offshore delineation of PCBs
and pesticides
Offshore delineation of PCBs | Yes | | | | , 2 miu D | | | | | | | | and pesticides | j | | | C302 | B and C | | | X^b | | | X | | Subsurface dioxin and PCB | partial Yes Why do congeners in both B and C, suggest doing B only. | |--------------|--------------------------|---------------------|--------|----------------|---|---|---|--------|---|---| | C521 | A, B and D | | X | X | | | | | congener data in vicinity of
Wacker Offshore delineation of PCBs | partial Yes No to A, collocated G521 which represents A was already analyzed for | | | , | | | | | | | | and pesticides | Pest/PCBs. C521 B and D already selected PCB analysis in FSP; C521 C and
E already selected for pesticide anlysis. Recommend doing B and D for both
as requested. | | | D | X ^a | | | | | | | Elevated levels of mercury detected in C interval | Yes | | | E
D | X
X ^a | | X^b | | | | | Elevated levels of copper in C324-E Mercury levels increase with | No Concentrations decrease w/depth and this segment E is only 1 ft thick. Yes | | 5327 | D | X | | X | | | | | depth; subsurface congener | | | C329 | A, B and D | | | | | | | X | Elevated levels of PAH
contamination; no TPH data | Yes | | | A, C and E D and E | | | | | | X | Х | Elevated levels of PAH contamination; no TPH data Delineation of dioxin | Yes No to D, E C335-E already selected for dioxin analysis; concentrations in -B (41 pg/g) and - | | C348 | A and B | | | | | | X | | contamination Delineation of dioxin | selected in FSP C (11.9 pg/g) show decreasing w/depth. Will interpolate between C and E conservatively | | 2346 | A and B | | | | | | Λ | | contamination downstream of C351 | | | C342 | B and C | | | X^{b} | | | X | | Subsurface dioxin and PCB congener data in vicinity of | Yes | | C347 | Е | X ^c | | | | X | | | Triangle Park Elevated levels of PAHs, copper, zinc and mercury in | Yes | | C349 | D | X ^a | | | | | | | interval C Mercury levels increase with | Yes | | C356 | D | X | | | | | | | depth Elevated levels of zinc and chromium in interval C | No Sample interval less than 2 ft thick. Will extrapolate higher C levels to E | | C356 | A, B and D | | | X | | | | | Offshore delineation of PCB contamination | Yes | | | A and C | | | X | | | | | Offshore delineation of PCB contamination | Yes B not C, there is no C at this location | | | D | X ^a | | v | | | | | Mercury levels increase with depth | Yes No intermediate interval, conc increases from E1 (187 ug/kg) to G1 (832 ug/kg); | | | F1 | | | X | | | V | | Delineation of PCB contamination, | we will assume G1 level extends upward to E, replicate core shows low concentrations in F1 depth interval | | C366 | C1 | | | X ^b | | | X | | Subsurface dioxin and PCB congener data in vicinity of Arkema | Yes | | | В | | | X ^b | | | | | Subsurface congener data in vicinity of Arkema | | | | D | | X | X | | X | X | | Vertical delineation of dioxin
PCBs, pesticides and PAHs | No vertical gap is ~ 3ft, for all compounds we will interpolate conservatively | | C377 | Е | | | X ^b | | | X | | Subsurface dioxin and PCB congener data in vicinity of Willbridge/Arkema | Yes C377-E was already analyzed for dioxins. Congeners will be analyzed | | C379
C380 | A, B and D
A, C and E | | | | | | | X
X | Spatial coverage of TPH
Spatial coverage of TPH; | Yes
Yes | | C382 | В | | | X^{b} | | | X | | downstream from M1 Outfall Subsurface dioxin and PCB | Yes | | C397 | С | | | X ^b | | | | | congener data in vicinity of
Shipyard/Swan Island Lagoon
Subsurface PCB congener data | Yes | | | | | | | | | | | in vicinity of Shipyard/Swan
Island Lagoon | | | | В | | | X ^b | | | X | | Subsurface congener data in vicinity of Willbridge Additional dioxin data in Swan | Yes
Yes | | 2403 | ь | | | | | | Λ | | Island Lagoon (east bank) | 103 | | C409 | A and B | Xe | | | | | | | Delineation of TBT upstream from shipyard | | | C409 | С | | | X ^b | | | | | Subsurface congener data in vicinity of Shipyard (Channel) | Yes | | C415 | A, B, D | | | | | | X | X | Spatial coverage of TPH | Yes no A sample, will use older G415 sample archive | | C417 | С | X | X | X | | | X | | Vertical delineation of contamination | partial Yes yes to dioxin, will conservatively assume higher B levels for metals, PCBs, pesticides extend to D. | | C420 | A and B | X ^e | | | | | | | Delineation of TBT upstream from shipyard | Yes | | C420 | С | | | X ^b | | | | | Subsurface congener data in vicinity of Shipyard (Channel) | Yes | | C421 | A, B and D | | X | | | | | | Spatial coverage within Swan
Island Lagoon | Yes | | C421
C426 | D and E | X | | Х | | | | | Vertical delineation of PCB contamination Elevated levels of copper | partial Yes analyze E only and conservatively assume levels for D and F No Cu decreasing with depth, will assume C level extends to bottom of core | | | C | Α | | | | | X | | detected in interval C Additional dioxin data in Swan | | | C430 | D | X ^c | | | | | | | Island Lagoon (head) Vertical delineation of copper | No will conservatively assume E levels extend upward to C | | C431 | В | | | X ^b | | | X | | and mercury contamination Subsurface dioxin and PCB | Yes | | C431 | E | | X | | | | | | congener data downstream of
Gunderson
Vertical delineation of DDT | No C431-F already selected for Pest and SVOCs analysis, will conservatively | | | A and C | | X | | | | | | contamination Elevated levels of total | interpolate E levels Yes | | | | X ^a | | | | | | | chlordane detected in C441
Mercury levels increase with | Yes | | C440
C441 | A and C
A1, B1 and | | X | | | | | X | depth Spatial coverage of pesticides Spatial coverage of TPH | Yes
Yes | | | D1 D | X ^a | | | | | | Λ | Mercury levels increase with | Yes | | C445 | D D | X | X | X | | | | | depth; high levels of mercury Elevated levels of arsenic, | No for all analytes, will make most conservative assumptions about D | | | | | | | | | | | Copper, lead, zinc, PCBs and pesticides detected in interval C and E | concentrations | | C447
C448 | A and C
A, C and E? | | X
X | | | | | | Spatial coverage of pesticides Spatial coverage of pesticides | Yes no E Sample for this core | | | D
B and C | | | X ^b | | | X | X | Vertical delineation of TPH PCB and potential dioxin | Yes partial Yes congeners , dioxins on B only where conc peaks | | C455 | B and C | | | X ^b | | | X | | PCB and potential dioxin source area | partial Yes congeners , dioxins on B only where conc peaks | | C456
C457 | B and C | X | | X | X | X | | X | Lateral delineation of TPH Elevated levels of | Yes No for all analytes, will make most conservative assumptions about D | | | | | | | | | | | contamination in C and E intervals | concentrations | | | A, B, D | | | | | | | X | Spatial coverage | Yes | | C477 | В | | | X ^b | | | | X | Subsurface congener data
downstream of Fire boat area
No nearby TPH data; | Yes | | 7404 | | | | | | 1 | | Λ | ino nearby 1 PH data; | 100 | | | A, B, D
C | | | X ^b | | | X | | stormwater discharge area
Subsurface dioxin and PCB | Yes | Table 3-1. Archived Round 2A Subsurface Samples Selected for Analysis. | | | | MET | ALS | | | | PESTICIDES/PCBs | | | | | SVOCs | | SVOG PAHs | | | | DIOXINS | | | | |----------------------------|--|-----------------|----------|--------|-------------------|-------------------|----------|--------------------|--------------------|------------|----------|------------|-------------------|-------------------|------------------|-----------------------------|-------------------|--------------------|-------------------|------|------------------|--------------| | Core/Grab | | | | | | | Metals | Total | | Total | PCBs | Pesticides | | | | | SVOCs
Analyses | | | PAHs | | Dioxins | | Samples | Arsenic C | Cadmium | Chromium | Copper | Lead | Zinc | Analyses | PCBs | Total DDTs | Chlordanes | Analyses | | Dibenzofuran | Hexachlorobenzene | 4-Methylphenol | Bis(2-ethylhexyl) phthalate | (w/o PAHs) | LPAHs | HPAHs | | 2,3,7,8-TCDD TEQ | | | LW2-C011-F1 | | | | | | | | C011-F1 | C011-F1 | | X | | C011-F1 | | * • | | X | | C011-F1 | X | | | | LW2-C011-G2 | | | | | | | | | | | | | | | C011-G2 | | X | | | | | | | LW2-C015-E | C015-E C0 | 015-E | | | | C015-E | | C015-E | C015-E | | X | X | C015-E | | C015-E | G040 B4 | X | C015-E | C015-E | X | | ↓ | | LW2-C019-D1 | CC | 019-E2 | | | C019-E2 | C019-E2 | | C019-D1
C019-E2 | C019-D1
C019-E2 | | X | X | | | | C019-D1
C019-E2 | X | C019-D1 | C019-D1 | X | | | | LW2-C019-E2
LW2-C020-D | | 019-E2
020-D | | | C019-E2 | C019-E2 | | C020-D | | C020-D | X | X | | | | C019-E2 | A | C020-D | | X | | <u> </u> | | LW2-C020-D | | 020-D | | | | C022-D | X | C020-D | C020-D | С020-Б | X | Λ | | | C022-D | | X | C020-D | | Λ | | | | LW2-C025-D1 | | | | | | | | C025-D1 | | | X | | | | | | | | | | | | | LW2-C025-E2 | | | | | | | | C025-E2 | | | X | | | | | | | | | | | | | LW2-C027-D | | | | | | | | C027-D | | | X | | | | | | | | | | | 4 | | LW2-C034-F | | | | 00.50 | | G0.50 A | 77 | G0.60 A | C034-F | | *** | X | | GO CO. A | G0.60 A | | *** | G0.60 A | C034-F | X | G0.60 A | | | LW2-C060-A
LW2-C061-B | | | | C060-A | | C060-A | X | C060-A
C061-B | C060-A | | X | X | | C060-A | C060-A | | X | C060-A | C060-A | X | C060-A | X | | LW2-C061-B
LW2-C061-C | - | | | | | | | | C061-C | | X | X | | | | | | | + | | | | | LW2-C061-E | | | | | | | | | C061-E | | X | X | | | | | | | | | | | | LW2-C066-F | | | | | | | | C001 2 | | C066-F | - 11 | X | | | | | | | | | | | | LW2-C111-A2 | | | | | | | | C111-A2 | | | X | | | | | C111-A2 | X | | | | C111-A2 | X | | LW2-C111-D2 | | | | - | | | | | | | | | | | | | | C111-D2 | | X | | | | LW2-C121-D | | | | | | | | | C121-D | | X | X | C121-D | | C121-D | | X | C121-D | C121-D | X | | ┌── | | LW2-C133-C | ╟───├ | | | | C127 P | C127 D | | C133-C | | | X | | C125 D | | | C125 D | 37 | C127 D | C125 D | 37 | C133-C | X | | LW2-C135-D
LW2-C139-D | ╂ | 1 | | | C135-D | C135-D
C139-D | X | C135-D
C139-D | C139-D | C139-D | X | v | C135-D | | | C135-D
C139-D | X | C135-D
C139-D | C135-D
C139-D | X | | ├── | | LW2-C139-D
LW2-C144-C | | | | | | C139-D | X | C139-D | C139-D | C139-D | Λ | X | | | | C139-D | X | C139-D
C144-C | C139-D | X | | | | LW2-C144-E | | | | | | | | | | | | | | | | | | C144-C | C144-E | X | | | | LW2-C148-E | | | | | C148-E | C148-E | X | | | | | | | | | | | C148-E | C148-E | X | | | | LW2-C152-E | | | | | C152-E | C152-E | X | | | | | | C152-E | | C152-E | | X | C152-E | C152-E | X | | | | LW2-C155-D | | | | | | | | | | | | | | | C155-D | | X | C155-D | C155-D | X | | | | LW2-C156-F | | | | | | C156-F | X | | | | | | C156-F | | | | X | C156-F | C156-F | X | | | | LW2-C158-E | | | | | CI CO D | CLC2 D | ** | | | | | | C158-E | | | | X | C158-E | C158-E | X | | | | LW2-C162-D
LW2-C163-D2 | | | | | C162-D
C163-D2 | C162-D
C163-D2 | X | | | | | | C162-D
C163-D2 | C163-D2 | C163-D2 | | X | C162-D
C163-D2 | C162-D
C163-D2 | X | | | | LW2-C163-D2
LW2-C169-D | | | | | C163-D2 | C163-D2 | X | | | | | | | C169-D | C103-D2 | C169-D | X | C163-D2
C169-D | C163-D2
C169-D | X | | | | LW2-C171-A | | | | | C107 D | C107 D | - 1 | C171-A | C171-A | | X | X | C10) D | C107 D | | C10) D | - 11 | C107 D | C10) D | | | | | LW2-C171-D | | | | | | | | | C171-D | | X | X | C171-D | | | | X | C171-D | C171-D | X | | | | LW2-C172-E | | | | | C172-E | C172-E | X | C172-E | C172-E | C172-E | X | X | | C172-E | | C172-E | X | C172-E | C172-E | X | | | | LW2-C173-E | | | | | | C173-E | X | | | | | | | C173-E | | | X | C173-E | C173-E | X | | | | LW2-C182-D | | | | | | | | C182-D | C182-D | | X | X | C182-D | | C182-D | | X | C182-D | C182-D | X | | | | LW2-C184-E | | | | | | | | | | | | | C185-D | | C184-E
C185-D | C185-D | X | C184-E
C185-D | C184-E
C185-D | X | | | | LW2-C185-D
LW2-C202-D | C202-D C2 | 202-D | C202-D | | C202-D | C202-D | X | C202-D | C202-D | | X | X | C202-D | | C202-D | C185-D | X | C202-D | C185-D
C202-D | X | | | | LW2-C202-B | C202-D C2 | 202-D | C202-D | | C202-D | C202-D | | C215-B | C215-B | | X | X | C202-D | | C202-D | | Λ | C202-D | C202-D | Λ | | | | LW2-C215-C | | | | | | | | | | C215-C | X | X | | | | | | | | | | | | LW2-C221-D | | | | | | | | | | | | | C221-D | | | | X | C221-D | C221-D | X | | | | LW2-C245-F | | | | | | | | | | | | | | | | | | | C245-F | X | | | | LW2-C252-D | | | | | | 1 | | C252-D | C252-D | | X | X | | | C252-D | | X | C252-D | C252-D | X | | ── | | LW2-C258-D | | | | | | | | | G260 D | | | 37 | | | | | | C258-D | | X | | | | LW2-C260-D
LW2-C264-D | ╟──┼ | | | | | 1 | - | C264-D | C260-D
C264-D | | X | X | C264-D | | | | X | C264-D | C264-D | X | | ├── | | LW2-C264-D
LW2-C269-A | | | | | | + | 1 | C264-D
C269-A | C204-D | | X | X | C204-D | | | + | Λ | C204-D | C204-D | Λ | | | | LW2-C269-D | | | | | | 1 | 1 | C269-D | | | X | | | | | | | | | | | | | LW2-C270-D | | | | | | C270-D | X | | C270-D | | | X | C270-D | C270-D | | | X | C270-D | C270-D | X | | | | LW2-C273-D | | | | | | | | | | C273-D | | X | C273-D | | | | X | C273-D | C273-D | X | | | | LW2-C276-D | | | | | | | | | C276-D | | | X | | | C276-D | C276-D | X | C276-D | C276-D | X | | | | LW2-C282-A | | | | | | | | C282-A | | | X | | | | | | | C282-A | C282-A | X | | ↓ | | LW2-C283-D | | | | | | - | - | | | | | | C283-D | | | | X | C204 E | C204 E | 37 | | ├ | | LW2-C284-E
LW2-C293-A2 | ╂ | - | | | | - | - | | | | | | | | | | | C284-E
C293-A2 | C284-E
C293-A2 | X | | | | LW2-C293-A2
LW2-C293-D2 | | 1 | | | | + | 1 | | | | | | | | C293-D2 | | X | C293-A2
C293-D2 | C293-A2 | X | | | | LW2-C293-D2
LW2-C301-D | | | | | | C301-A | X | | | | | | | | CB/3 DE | | | 22/3 DZ | | - 11 | | | | LW2-C302-D | | | | | | | 1 | C302-D | C302-D | | X | X | | C302-D | C302-D | C302-D | X | C302-D | C302-D | X | | | | LW2-C314-D | | | | | | C314-D | X | | C314-D | C314-D | X | X | | | C314-D | | X | C314-D | C314-D | X | C314-D | X | | LW2-C326-D | | | | | C326-D | | X | | | | | | | | | | | | | | | | | LW2-C327-D | C327-D C3 | 327-D | | C327-D | C327-D | C327-D | X | C327-D | C327-D | | X | X | | | C327-D | | X | C327-D | C327-D | X | C327-D | X | | LW2-C331-G | ii l | | | | | | 1 | | | | | <u> </u> | | | | C331-G | X | | | | | 1 | Round 2A FSP Addendum for Analysis of Archived Sediment Samples July 18, 2005 DRAFT Table 3-1. Archived Round 2A Subsurface Samples Selected for Analysis. | | | | MET. | ALS | | | | PESTICIDES/PCBs | | | | | | | SVOCs | | GWOG | PA | AHs | | DIOXINS | | |---------------------------------------|------------|--------------|----------|--------|---------|----------|----------|-------------------|------------|------------|------------------|------------|--------------|-----------------------|----------------|------------------------------|------------|------------------|------------------|----------|------------------|---------| | Coro/Grob | | | | | | | Matala | Total | | Total | DCD _a | Dogticidos | | | | | SVOCs | | | DAII | | Diarina | | Core/Grab | Arconio | Codmium | Chromium | Connor | Lead | Zinc | Metals | | Total DDTa | Chlordanes | | Pesticides | Dihanzafuran | Uavaahlanahanzana | 4 Mothylphonol | Bis(2-ethylhexyl) phthalate | Analyses | I DAHG | HPAHs | PAHs | 2,3,7,8-TCDD TEQ | Dioxins | | Samples | Aischic | Caulillulli | Cinomium | Copper | Leau | Zilic | Analyses | T CDS | Total DD18 | Cinoraures | Analyses | Analyses | Dibenzoruran | Trexacillor obelizene | 4-Methylphenor | Dis(2-ethylilexyl) phthalate | (W/O PAHS) | LIAIIS | III AIIS | Analyses | | | | LW2-C334-D | | | | | | | - | | | | | | | | G225 F | | 37 | G225 F | GOOF F | 37 | C334-D | X | | LW2-C335-E | | | | | | | 1 | | | | | | | | C335-E | | X | C335-E | C335-E
C342-E | X | C335-E | X | | LW2-C342-E
LW2-C346-D | | | | | | | - | | | | | | | | C346-D | | v | C342-E
C346-D | C342-E | X | | | | LW2-C347-E | | | - | | | - | 1 | C247 E | C347-E | | - V | - V | | | C340-D | | X | C340-D | - | X | | | | LW2-C347-E
LW2-C349-D | | | | | | C349-D | X | C347-E | | C349-D | X | X | | | C349-D | | X | 1 | | | | | | LW2-C364-D | | | | | | C349-D | Λ | | C349-D | C349-D | | Λ | | | C364-D | | X | C364-D | C364-D | X | | | | LW2-C372-E | | | | | | | | C372-E | | | X | | | | C372-E | | X | C372-E | C304-D | X | | | | LW2-C372-E
LW2-C373-D | | | | C373-D | | C373-D | | C372-E
C373-D | | | X | | | | C3/2-E | C373-D | X | C372-E
C373-D | | X | | | | LW2-C373-D
LW2-C382-D | | | | C3/3-D | | C3/3-D | Λ | C3/3-D | C382-D | | Λ | X | | | | C373-D | Λ | C3/3-D | | Λ | | | | LW2-C383-D | | | C383-D | | | | X | | C362-D | | | Λ | | | | | | - | | | | | | LW2-C384-F | | | | C384-F | | | | C384-E | | | X | | | | | | | 1 | C384-F | X | | | | LW2-C392-D | | | | C364-F | | | | C392-D | | | X | | | | | | | 1 | С364-Г | Λ | | | | LW2-C392-D
LW2-C400-D | | | | C400-D | | C400-D | X | C400-D | | | X | | | | C400-D | C400-D | X | 1 | | | | | | LW2-C400-D
LW2-C401-F | | | | C400-D | | C400-D | | | C401-F | | X | X | | | C400-D | C400-D | Λ | C401-F | C401-F | X | | | | LW2-C401-F
LW2-C403-F | | | C403-F | | | | X | С401-Г | С401-Г | | Λ | Λ | | | | | | С401-Г | С401-Г | Λ | | | | LW2-C405-F
LW2-C405-E | | C405-E | C405-F | | C405-E | C405-E | | C405-E | | | X | | | | C405-E | C405-E | X | C405-E | C405-E | X | | | | LW2-C409-D | | C403-E | | | C409-D | C403-E | | | C409-D | | X | X | C409-D | | C403-E | C403-E | X | C409-D | C409-D | X | | | | LW2-C409-D
LW2-C415-E | | | C415-E | C409-D | C409-D | | X | C409-D | C409-D | | Λ | Λ | C409-D | | | | Λ | C409-D | C409-D | Λ | | | | LW2-C413-E
LW2-C420-D | | | | C420-D | | C420-D | | C420-D | C420-D | | X | X | | | | C420-D | X | 1 | | | | | | LW2-C420-D | | | | | C421-D | C420-D | | C420-D
C421-D | C420-D | | X | Λ | | | | C420-D | Λ | | | | | | | LW2-C421-F | | | | | C421-D | C421-D | | C421-D
C421-F | | | X | | | | | | | | | | | | | LW2-C421-F
LW2-C425-F1 | | | | С421-Г | С421-Г | C421-F | | C421-F
C425-F1 | | | X | | | | | C425-F1 | X | 1 | | | | | | LW2-C425-11
LW2-C426-A | | | | | | | | C423-11 | | | Λ | | | | | C423-1·1 | Λ | 1 | C426-A | X | C426-A | X | | LW2-C430-A | C430-A | C430-A | C430-A | C430-A | C430-A | C430-A | X | C430-A | | | X | | | | | | | C430-A | C420-A | X | C420-A | Λ | | LW2-C430-A | C430-A | C430-A | C430-A | C430-A | C430-A | C430-A | Λ | C430-A | C431-F | | Λ | X | | | C431-F | | X | C430-A | C430-A | Λ | | | | LW2-C431-I | | | | | | | 1 | | C431-1 | | | Λ | | | C431-1 | | Λ | 1 | C434-A | X | | | | LW2-C434-A
LW2-C436-E | C436-E | C436-E | C436-E | C436-E | C436-E | C436-E | X | C436-E | | | X | | C436-E | | C436-E | | X | C436-E | C+3+-A | X | | | | LW2-C439-D | C430-L | C439-D | | | C439-D | C439-D | | C439-D | | | X | | C430-L | | C439-D | C439-D | X | C430-L | C439-D | X | | | | LW2-C440-D | C440-D | C+3)-D | | C440-D | C440-D | C440-D | | C440-D | | | X | | | | C440-D | C+37-D | X | 1 | C-440-D | X | | | | LW2-C444-E | C440-D | | | C444-E | C444-E | C444-E | | C444-E | C444-E | | X | X | | | C444-E | | X | | C-440-D | Λ | | | | LW2-C445-D | | | | Сттт Б | CTTTL | CTTTL | | Сттъ | CTTT L | | - 21 | - 21 | | CTTT L | СТТЕ | | 71 | 1 | C445-D | X | | | | LW2-C447-F | | | | | | | - | | | | | | | | C447-F | | X | 1 | CTTS D | 21 | | | | LW2-C448-D | | C448-D | | C448-D | C448-D | C448-D | X | C448-D | | | X | | | | C++/ 1 | C448-D | X | 1 | | | | | | LW2-C454-H | | CTIO D | | C110 D | C 110 B | CTIOD | | CITOD | | | 21 | | | | C454-H | C110 B | X | 1 | | | | | | LW2-C455-F | | | | | | | | C455-F | | | X | | | | C455-F | | X | C455-F | | X | | | | LW2-C456-G | | | | | | | | C+33 I | | | 21 | | | | C+33 I | | 71 | C456-G | C456-G | X | | | | LW2-C458-D1 | | | | | | | - | | C458-D | C458-D | | X | | | | | | C+30 G | C+30 G | 21 | | | | LW2-C458-D2 | | | | | | | | C458-D2 | C 150 B | C 150 B | X | 21 | | | | | | | | | | | | LW2-C461-D | | | | C461-D | C461-D | | | C461-D | | | X | | | | C461-D | C461-D | X | 1 | | | | | | LW2-C462-D | | | | C+01 D | CTOI D | | | C462-D | | | X | | | | C462-D | C+01 B | X | 1 | | | | | | LW2-C468-D | | | | | | | | C468-D | | | X | | | | | C468-D | X | 1 | | | | | | LW2-C471-D | | | | | | | | C471-D | | | X | | | | C 100 B | C 100 B | 71 | 1 | | | | | | LW2-C471-D | | | | | | | | C471-D
C474-D | | | X | | | | C474-D | | X | | | | 1 | | | LW2-C494-A | | | | | | | 1 | C494-A | | | X | | | | C./1D | | 21 | | | | | | | LW2-C521-B | | | | | | | 1 | C521-B | | | X | | | | | | | | | | 1 | | | LW2-C521-C | | | | | | | 1 | | C521-C | | - 11 | X | | | | | | 1 | | | 1 | | | LW2-C521-D | | | | | | | 1 | C521-D | 502. 0 | | X | | C521-D | | C521-D | C521-D | X | 1 | C521-D | X | 1 | | | LW2-C521-E | | | | | | | | | C521-E | | X | X | 23212 | | | | ** | 1 | 302. D | | 1 | | | | = Total No | of Samples S | Selected | TOTALS/Analyte | 6 | 10 | 7 | 16 | 22 | 32 | 40 | 63 | 38 | 9 | 63 | 39 | 24 | 10 | 38 | 21 | 62 | 52 | 52 | 62 | 8 | 8 | | · · · · · · · · · · · · · · · · · · · | | | | - 0 | | | | | | | , ,,, | / | | | | 1 1 | | | | u | | | Selection Rationale (see text for additional information) - 1. Concentrations increase with depth above the archived segment. 2. Concentration in deepest analyzed segment appears to be locally elevated. 3. Vertical gap (several foot interval) between steep concentration gradient. 4. Core and surface grab locations substantially offset, and elevated concentrations evident in B core segment (analyze A segment). - 5. LWG request.